北京化春寒新能源科技合伙企业(有限合伙),由韩世航先生于2021年创立。
主要业务为新能源技术的开发及利用,股权投资,以及控股和建设电力,供暖等项目。
目前供暖总覆盖范围一百余万亩。股权投资方向包括信息技术、先进制造、医药医疗、新能源新材料和新消费等五大领域。控股多家清华系发电及供暖公司。
公司拥有成熟的余热综合回收利用技术。
通过对造纸、电子、钢铁、化工、食品、煤炭、电力等行业余热排放调查,提出了模板式余热回收再利用方案,采用能源合同式管理,分享节能带来的效益。
拥有熟悉各类工厂生产作业流程的专业技术人员。
拥有多个节能改造成功的案例。
拥有国家级节能减排专家作为技术顾问。

 

诚信

活力

可靠

我们是有活力四射的团队,

诚信尽责的为您服务,

提高可靠的产品和解决方案,

专注产品研发,开拓创新,提升技术水平!

①从各种工艺设备排出的高温烟气。例如冶金炉、加热炉、工业窑炉、燃料气化装置等,都有大量高温烟气排出。通常将高温烟气引入余热锅炉,产生蒸汽后送往热网供热。余热锅炉型式有火管锅炉、自然循环和强制循环的水管锅炉。由于余热锅炉前的燃烧设备工况不甚稳定,烟气中含尘量大,因而,要求锅炉的金属材料对于热负荷或烟气温度的突然变化具有较好的适应性,并能耐含尘烟气的冲刷和腐蚀。余热利用的经济性,通常随烟气量的增大而提高。烟气量少时,即使初温很高,也不一定经济合理。
②工艺设备的冷却水。中国一些钢铁企业利用焦化厂初冷循环水余热,进行较大范围的集中供热,取得了良好的效果。焦炉产生的荒煤气经列管式初冷器被水冷却,冷却水升温至50~55°C,用作热网循环水。例如鞍山、本溪等城市利用这种余热供热的建筑面积都已超过120万平方米。
炼铁高炉的冲渣水和泡渣水等工业余热,近年来也被利用于城市供热。高炉渣是炼铁过程的产物,可采用炉前水力冲渣或渣罐泡渣等方法处理。冲渣水或泡渣水吸热以后,可作循环水供热,如北京石景山钢铁厂已向50万米(左右的建筑物提供这种工业余热蒸汽锻锤的废蒸汽是小型集中供热的一种热源,一般用以满足本厂及住宅区的生活用热。这种废蒸汽量的波动较大,需要时可采用蓄热器进行负荷调节。
我国工业领域余能利用空间很大,工业冷却水、工业废水、地热尾水中蕴含着大量热能,但因热值较低难以提取而几乎全部丢弃,使用热泵技术则能将废水中的7摄氏度至50摄氏度的低品位余热,转换成50摄氏度至85摄氏度的高品位热能加以利用。
我国北方地区供热能耗很大,东北地区将近6个月,北京等地区的供暖期也有4个月左右。
而我们在生活中对热能的需求主要来源于燃煤,我国是以煤炭为主的能源消费大国,燃煤占世界煤炭消费量的27%。而我国煤炭消费的主要方式是直接燃烧,这种能源消费结构导致能源利用效率低下、环境污染严重等问题。
工业企业排放的污水通常都在30摄氏度以上,这不仅给环境造成热污染,还造成了热量的浪费。据测算,工业冷却水、工业废水、地热尾水中蕴含着大量热能,但因热值较低难以提取而几乎全部丢弃,热泵技术则能将以往弃之不用的废水中的7摄氏度至50摄氏度的低品位余热,制成50摄氏度至85摄氏度的高品位热能加以利用。
于是,利用地源热泵技术,收集工业余热用于北方采暖地区的供热热源,让热泵技术有了新的应用空间。
地源热泵技术应用到工业领域之后,所应用的是工业水,与地源热泵原来所利用地下水相比,工业废水水质较差,有腐蚀性。此外,浅层地热水的温度在16摄氏度左右,而工业废水的温度变化较大,10摄氏度至30摄氏度不等。这些特点都给工业余热型热泵技术提出了更高要求。
在我国工业生产过程中,煤的热转化效率总体只有30%以上,而一些发达国家的煤炭利用率已达到90%以上,利用地源热泵把工业余热利用起来,可提高工业生产中煤炭利用效率。
工业余热分为压缩式热泵和吸收式热泵。
吸收式热泵以供热为主,而压缩式热泵则能够更好地冷热兼顾,冬天制热、夏天制冷。两种技术的选择上,应该因地制宜,客观分析。
据专家介绍,利用吸收式热泵应用于工业领域再向居民发电需要满足三个条件:

一是要有驱动式热源。如热电厂用来发电的热蒸汽。
二是要有余热资源。还是以热电厂为例,以前是通过换热器将高温蒸汽中的热量传输给利用吸收式热泵,代替原来的换热器后,热效率大大提高了。同时,当压力巨大的蒸汽用于发电之后,剩余压力会减小,同时温度降低的废蒸汽,被称作乏汽。原来,这部分乏汽将通过冷却塔冷却掉形成工业废水,如今这部分废蒸汽的余热就可以通过应用工业型地源热泵利用起来。
三是要有供热需求。目前,这种工业用地源热泵还主要应用于距离厂矿较近的厂矿自己的家属区,随着这项技术逐步趋于完善,将更加广泛地应用于城市供暖。
专家表示,工业型地源热泵能够应用于许多工业生产领域,除了热电厂之外,煤炭行业、钢铁行业以及石油行业等都能够应用。

ORC工业低温余热发电
工业余热主要是指工业企业的工艺设备在生产过程中排放的废热、废水、废气等低品位能源,利用余热回收技术将这些低品位能源加以回收利用,提供工艺热水或者为建筑供热、提供生活热水。该技术的应用不仅减少了工业企业的污染排放,还大幅度降低了工业企业原有的能源消耗。
系统特点
提高能源利用率,充分回收并利用工业企业的余热、废热,降低工业企业能源的消耗量,大幅度节省能源投资及运行费用。
应用条件
有余热、废热、废水、烟气等低品位能源排放的企业。
有工艺设备降温用的冷却循环水的企业。
有蒸汽冷凝水排放的企业。
环保及经济效益
将工业企业排放的废水、废热、废气等低品位能源加以回收利用,解决工业企业自身的热需求,不仅降低了工业企业的污染排放,而且减少了工业企业工艺需要所消耗的高品位能源,从而大幅度降低了能源投资及运行费用。
工业企业的余热回收利用具有投资少、效益高、节能效果明显等优点。
一、概述:
在钢铁、化工、有色冶金、水泥等众多工业领域的生产过程中会产生大量的余热资源,包括热水、热气、辐射显热等。目前高压或高温的余热已经获得较为充分的利用。而大量的低温余热资源(250℃以下,低压或常压),由于缺乏有效的技术手段而没有得到充分利用,或仅能产生低品位的回收(如热水等)。传统余热发电技术的工作参数大多为高参数、大容量,无法利用这部分较为分散但总量巨大的低温余热能源。
ORC(有机工质朗肯循环)低温余热发电系统能够实现余热回收和发电的最低余热资源温度可低到80℃,这是常规发电技术不能做到的(常规发电通常要求热源温度在300~350℃以上),从而较大地拓宽了可以回收发电的余热资源的利用范围,为钢铁、化工、有色冶金、水泥等行业的低温余热资源回收提供了有效的技术手段和设备。
二、ORC有机朗肯循环发电系统
ORC有机工质朗肯循环,即在传统朗肯循环中采用有机工质代替水产生蒸汽,推动膨胀机做功。
低压液态有机工质具有更低的冷凝温度,如正丁烷、异丁烷、R245fa、R142b等,在较低温度下即可产生较高压力的蒸汽。余热温度在80~250℃,余热形态包括烟气、蒸汽和热水等。
液态有机工质经有机工质泵增压后进入蒸发器吸收热量转变为高温高压蒸气;高温高压的有机工质蒸气再推动涡轮机做功,产生电能输出,有机工质蒸汽同时减压;涡轮机出口的低压蒸气进入冷凝器,向低温热源放热并冷凝为液态,完成一次循环。
蒸发器可采用低温余热直接蒸发,或采用由其生成的中间热水(约150℃)进行有机工质的蒸发。